A Genetic Algorithm for Fractional Programming Fuzzy Portfolio Selection Model 分式规划模糊投资组合模型的遗传算法求解
A Deterministic Global Optimization Method for Solving Linear Fractional Programming 线性分式规划全局最优解的确定性方法
Firstly, this article transform the fractional programming problem with polytope constraints to an equivalent problem. 分式规划问题是一类被广泛研究的非线性规划问题。
In the present paper, a type of higher order dual model is formulated for minimax fractional programming problem. 提出了一个非线性规划的对称对偶模型,它统一了非线性规划中两类对称模型。
A deterministic global optimization algorithm is proposed for a class of fractional programming problem ( P1), which can be generally applied to engineering. 对广泛应用于工程中一类比式规划问题(P1)给出了一个确定性全局优化算法。
Optimality conditions for multi-objective fractional programming with a new formulation of generalized convexity 一种新广义凸多目标分式规划的最优性充分条件
The construction and application of energy input-output fractional programming model 能源投入产出分式规划模型的构建与应用
An interactive linear fractional programming algorithm is presented to solve multiple attribute decision problems based on the assumption that the decision-maker has a linear utility function. 本文提出一个直接处理一般形式线性分式规划的算法而不需要把问题的约束条件转化为标准形式。
Optimality Conditions for a Class of Generalized Semi-Infinite Vector Fractional Programming 一类广义半无限向量分式规划的最优性条件
Optimality Conditions and Duality for a Class of Multiobjective Semi-infinite Fractional Programming 一类多目标半无限分式规划的最优性与对偶性
The K-T sufficient condition of fractional programming in Banach Space Banach空间中分式规划的一个K-T型充分条件
Multiobjective generalized fractional programming: lagrange optimality conditions and duality theory 多目标广义分式规划的Lagrange最忧性条件和对偶理论
In this paper, optimality sufficient conditions and duality results are presented for a class of nonlinear multiobjective fractional programming problems. These results are based on the properties of sublinear functionals and generalized ( F,α,ρ, d)-convex functions. 本文利用亚线性函数和广义(F,α,ρ,d)-凸性的概念,给出了一类非线性多目标分式规划的充分性条件和对偶结果。
Gives two duality theorems of G-Pareto solution for generalized multiobjective fractional programming problem ( P) and its Mond-Weir type dual problem ( D). 给出了一般多目标分式规划问题(P)及其Mond-Weir型对偶问题(D)关于G-Pareto解的两个对偶性定理。
The sufficient and necessary conditions of the multiobjective fractional programming ( VFP) for ( F,ρ)-invariant convex function was discussed in reference. 在文献[1]中,讨论了(F,ρ)-不变凸函数条件下,多目标分式规化(VFP)的充要条件。
Systematically discusses the fundamental theorems of weak efficient solution, efficient solution and properly efficient solution for multiobjective fractional programming problems with set functions. 系统地讨论了集函数多目标分式规划的弱有效解、有效解和真有效解的基本定理。
Dual programming of linear fractional programming 一类分式线性规划问题的对偶规划与算法
On the basis of many researchers 'studies, this paper presents the model of the multiple objective linear fractional programming and develops a better method of linguistic variable based on the fuzzy set theory when finding this kind of solutions. 在许多学者研究的基础上,给出了多目标线性分式规划的模型,研究并完善了求解该类问题的基于模糊集理论的语言变量方法。
The parametric linear fractional programming problems are discussed. 讨论了目标函数及约束条件的常数项含参数的分式线性规划问题。
The multi-objective fractional programming with the ( F,ρ) convexity is studied. 在(F,ρ)-凸性条件下研究了一类多目标分式规划问题的最优性条件。
The paper discusses the duality theorems for the generalized convex multiobjective fractional programming and get a more general result. 本文讨论了一类多目标广义凸分式规划的对偶定理,其结果是对张吉军的对偶定理的推广。
A two-level algorithm is proposed for fractional programming problems with constraints, and its theoretical base is established. 本文提出两级分式规划方法求解具有约束的一类分式规划问题,建立了两级算法的理论基础。
A class of generalized ( F, a,ρ, d)-convex function is defined in terms of clarke generalized gradient, the semi-infinite fractional programming with this kind of function is researched, some optimal conditions and duality are presented. 利用Clarke广义梯度,定义了一类广义(F,a,ρ,d)-凸函数,研究了具有这种函数性质的半无限分式规划,得出了一些最优性条件和对偶结果。
Then we use Karmarkar algorithm for the liner programming to get the polynomial-time algorithm for liner fractional programming. 将Karmarkar算法用于该线性规划,我们得到了线性分式规划的多项式算法。
Karmarkar's Algorithm and linear Fractional Programming Karmarkar算法与分式线性规划
Parametric Linear Fractional Programming Problems 含参数的分式线性规划问题
Sensitivity Analysis of Linear Fractional Programming Problem 线性分式规划问题的灵敏度分析
These theories enriched the optimality and duality of the minimax fractional programming, which has expanded the theories of the minimax programming. 从而丰富了极小极大规划的最优性和对偶理论,是对极小极大规划的理论研究的拓展。
The estimate of the weight problem can be solved by solving a fractional programming problem of reference set in this method. And it can effectively solve the deviation problem of artificial empowerment estimate. 该方法对评价时涉及的权重问题可通过求解参考集的一个分式规划问题来确定,从而可有效地解决人工赋权造成的评价结果偏差问题。
This dissertation studies mainly theory and methods of multiobjective programming, including penalty function method, optimality conditions and duality of nonsmooth multi-objective fractional programming problems. 本文主要研究多目标规划的理论和方法,包括多目标规划的罚函数法和非光滑多目标分式规划的最优性条件以及对偶性。